我在极客时间上开了一门面向中高级Go程序员的课程:Go 并发编程实战课,有读者问Go channel中的实现中使用了mutex,这个mutex和标准库中的Mutex有什么不同?正好在百度厂内分享Go相关课程中有同事也提出了相同的问题,所以我专门写一篇文章介绍一下。
sync.Mutex是一个high level的同步原语,是为广大的Go开发者开发应用程序提供的一种数据结构,现在它的内部实现逻辑比较复杂了,包含spin和饥饿处理等逻辑,它底层使用了运行时的low level的一些函数和atomic的一些方法。
而运行时中的mutex是为运行时内部使用互斥锁而提供的一个同步原语,它提供了spin和等待队列,并没有去解决饥饿状态,而且它的实现和sync.Mutex的实现也是不一样的。它并没有以方法的方式提供Lock/Unlock,而是提供lock/unlock函数实现请求锁和释放锁。
Dan Scales 今年年初的时候又为运行时的锁增加了static locking rank的功能。他为运行时的架构无关的锁( architecture-independent locks)定义了rank,并且又定义了一些运行时的锁的偏序(此锁之前允许持有哪些锁)。这是运行时锁的一个巨大改变,但是很遗憾并没有一篇设计文档详细去描述这个功能的设计,你可以通过提交的comment(#0a820007)和代码中的注释去了解runtime内部锁的代码变化。
本质上来说,这个功能用来检查锁的顺序是不是按照文档设计的顺序执行的,如果有违反设定的顺序,就有可能死锁发生。因为缺乏准确的文档说明,并且这个功能主要是用来检查运行时锁的执行顺序的,所以在本文中我把这一段逻辑抹去不介绍了。实际Go运行时要开始这个检查的话,你需要设置变量GOEXPERIMENT=staticlockranking
。
那么接下来我们看看运行时的mutex的数据结构的定义以及lock/unlock的实现。
运行时mutex数据结构
运行时的mutex数据结构很简单,如下所示,定义在runtime2.go中:
|
|
如果不启用lock ranking,其实lockRankStruct就是一个空结构:
|
|
那么对于运行时的mutex,最重要的就是key字段了。这个字段针对不同的架构有不同的含义。
对于dragonfly
、freebsd
、linux
架构,mutex会使用基于Futex的实现, key就是一个uint32的值。 Linux提供的Futex(Fast user-space mutexes)用来构建用户空间的锁和信号量。Go 运行时封装了两个方法,用来sleep和唤醒当前线程:
- futexsleep(addr uint32, val uint32, ns int64):原子操作`if addr == val { sleep }`。
- futexwakeup(addr *uint32, cnt uint32):唤醒地址addr上的线程最多cnt次。
对于其他的架构,比如aix
、darwin
、netbsd
、openbsd
、plan9
、solaris
、windows
,mutex会使用基于sema的实现,key就是M* waitm
。Go 运行时封装了三个方法,用来创建信号量和sleep/wakeup:
- func semacreate(mp *m):创建信号量
- func semasleep(ns int64) int32: 请求信号量,请求不到会休眠一段时间
- func semawakeup(mp *m):唤醒mp
基于这两种实现,分别有不同的lock和unlock方法的实现,主要逻辑都是类似的,所以接下来我们只看基于Futex的lock/unlock。
请求锁lock
如果不使用lock ranking特性,lock的逻辑主要是由lock2实现的。
|
|
unlock
如果不使用lock ranking特性,unlock的逻辑主要是由unlock2实现的。
|
|
总体来说,运行时的mutex逻辑还不太复杂,主要是需要处理不同的架构的实现,它休眠唤醒的对象是m,而sync.Mutex休眠唤醒的对象是g。